Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Drug Discov Today ; : 103979, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608830

RESUMO

Drug discovery often begins with a new target. Protein-protein interactions (PPIs) are crucial to multitudinous cellular processes and offer a promising avenue for drug-target discovery. PPIs are characterized by multi-level complexity: at the protein level, interaction networks can be used to identify potential targets, whereas at the residue level, the details of the interactions of individual PPIs can be used to examine a target's druggability. Much great progress has been made in target discovery through multi-level PPI-related computational approaches, but these resources have not been fully discussed. Here, we systematically survey bioinformatics tools for identifying and assessing potential drug targets, examining their characteristics, limitations and applications. This work will aid the integration of the broader protein-to-network context with the analysis of detailed binding mechanisms to support the discovery of drug targets.

2.
J Agric Food Chem ; 72(14): 7684-7693, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38532701

RESUMO

Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.


Assuntos
Aldose-Cetose Isomerases , Antimaláricos , Fosfomicina , Fosfomicina/análogos & derivados , Difosfonatos , Simulação de Acoplamento Molecular , Fosfomicina/farmacologia , Aldose-Cetose Isomerases/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 256, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451307

RESUMO

Homogentisate solanesyltransferase (HST) is a crucial enzyme in the plastoquinone biosynthetic pathway and has recently emerged as a promising target for herbicides. In this study, we successfully expressed and purified a stable and highly pure form of seven times transmembrane protein Chlamydomonas reinhardtii HST (CrHST). The final yield of CrHST protein obtained was 12.2 mg per liter of M9 medium. We evaluated the inhibitory effect on CrHST using Des-Morpholinocarbony Cyclopyrimorate (DMC) and found its IC50 value to be 3.63 ± 0.53 µM, indicating significant inhibitory potential. Additionally, we investigated the substrate affinity of CrHST with two substrates, determining the Km values as 22.76 ± 1.70 µM for FPP and 48.54 ± 3.89 µM for HGA. Through sequence alignment analyses and three-dimensional structure predictions, we identified conserved amino acid residues forming the active cavity in the enzyme. The results from molecular docking and binding energy calculations indicate that DMC has a greater binding affinity with HST compared to HGA. These findings represent substantial progress in understanding CrHST's properties and potential for herbicide development. KEY POINTS: • First high-yield transmembrane CrHST protein via E. coli system • Preliminarily identified active cavity composition via activity testing • Determined substrate and inhibitor modes via molecular docking.


Assuntos
Chlamydomonas reinhardtii , Herbicidas , Escherichia coli/genética , Simulação de Acoplamento Molecular , Proteínas de Membrana , Aminoácidos , Chlamydomonas reinhardtii/genética , Herbicidas/farmacologia , Fenilacetatos
4.
J Agric Food Chem ; 72(7): 3755-3762, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346446

RESUMO

Picolinamide fungicides, structurally related to UK-2A and antimycin-A, bind into the Qi-site in the bc1 complex. However, the detailed binding mode of picolinamide fungicides remains unknown. In the present study, antimycin-A and UK-2A were selected to study the binding mode of picolinamide inhibitors with four protonation states in the Qi-site by integrating molecular dynamics simulation, molecular docking, and molecular mechanics Generalized Born surface area (MM/GBSA) calculations. Subsequently, a series of new picolinamide derivatives were designed and synthesized to further understand the effects of substituents on the tail phenyl ring. The computational results indicated that the substituted aromatic rings in antimycin-A and UK-2A were the pharmacophore fragments and made the primary contribution when bound to a protein. Compound 9g-hydrolysis formed H-bonds with Hie201 and Ash228 and showed an IC50 value of 6.05 ± 0.24 µM against the porcine bc1 complex. Compound 9c, with a simpler chemical structure, showed higher control effects than florylpicoxamid against cucumber downy mildew and expanded the fungicidal spectrum of picolinamide fungicides. The structural and mechanistic insights obtained from the present study will provide a valuable clue for the future designing of new promising Qi-site inhibitors.


Assuntos
Antimicina A/análogos & derivados , Fungicidas Industriais , Ácidos Picolínicos , Animais , Suínos , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Citocromos , Complexo III da Cadeia de Transporte de Elétrons , Lactonas , Piridinas
5.
J Agric Food Chem ; 72(8): 3884-3893, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375801

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Benzimidazóis , Herbicidas , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Herbicidas/farmacologia , Herbicidas/química , Arabidopsis/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
6.
Rev Med Virol ; 34(1): e2517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282401

RESUMO

Many significant viral infections have been recorded in human history, which have caused enormous negative impacts worldwide. Human-virus protein-protein interactions (PPIs) mediate viral infection and immune processes in the host. The identification, quantification, localization, and construction of human-virus PPIs maps are critical prerequisites for understanding the biophysical basis of the viral invasion process and characterising the framework for all protein functions. With the technological revolution and the introduction of artificial intelligence, the human-virus PPIs maps have been expanded rapidly in the past decade and shed light on solving complicated biomedical problems. However, there is still a lack of prospective insight into the field. In this work, we comprehensively review and compare the effectiveness, potential, and limitations of diverse approaches for constructing large-scale PPIs maps in human-virus, including experimental methods based on biophysics and biochemistry, databases of human-virus PPIs, computational methods based on artificial intelligence, and tools for visualising PPIs maps. The work aims to provide a toolbox for researchers, hoping to better assist in deciphering the relationship between humans and viruses.


Assuntos
Viroses , Vírus , Humanos , Proteínas Virais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Inteligência Artificial , Interações Hospedeiro-Patógeno
7.
Biosens Bioelectron ; 247: 115935, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128319

RESUMO

Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Fígado , Metabolismo dos Lipídeos , Acil Coenzima A/metabolismo
8.
J Agric Food Chem ; 71(49): 19396-19407, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38035573

RESUMO

Plant pathogenic fungi pose a significant threat to crop yields and quality, and the emergence of fungicide resistance has further exacerbated the problem in agriculture. Therefore, there is an urgent need for efficient and environmentally friendly fungicides. In this study, we investigated the antifungal activity of (+)-Usnic acid and its inhibitory effect on crop pathogenic fungal 4-hydroxyphenylpyruvate dioxygenases (HPPDs) and determined the structure of Zymoseptoria tritici HPPD (ZtHPPD)-(+)-Usnic acid complex. Thus, the antifungal target of (+)-Usnic acid and its inhibitory basis toward HPPD were uncovered. Additionally, we discovered a potential lead fungicide possessing a novel scaffold that displayed remarkable antifungal activities. Furthermore, our molecular docking analysis revealed the unique binding mode of this compound with ZtHPPD, explaining its high inhibitory effect. We concluded that HPPD represents a promising target for the control of phytopathogenic fungi, and the new compound serves as a novel starting point for the development of fungicides and dual-purpose pesticides.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Fungicidas Industriais , Herbicidas , Fungicidas Industriais/farmacologia , 4-Hidroxifenilpiruvato Dioxigenase/química , Herbicidas/química , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Relação Estrutura-Atividade
9.
Structure ; 31(12): 1604-1615.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37794595

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as a target for treating type I tyrosinemia and other diseases with defects in tyrosine catabolism. Only one commercial drug, 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC), clinically treat type I tyrosinemia, but show some severe side effects in clinical application. Here, we determined the structure of human HPPD-NTBC complex, and developed new pyrazole-benzothiadiazole 2,2-dioxide hybrids from the binding of NTBC. These compounds showed improved inhibition against human HPPD, among which compound a10 was the most active candidate. The Absorption Distribution Metabolism Excretion Toxicity (ADMET) predicted properties suggested that a10 had good druggability, and was with lower toxicity than NTBC. The structure comparison between inhibitor-bound and ligand-free form human HPPD showed a large conformational change of the C-terminal helix. Furthermore, the loop 1 and α7 helix were found adopting different conformations to assist the gating of the cavity, which explains the gating mechanism of human HPPD.


Assuntos
Herbicidas , Tiadiazóis , Tirosinemias , Humanos , Tirosinemias/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Pirazóis/farmacologia , Inibidores Enzimáticos/farmacologia
10.
Angew Chem Int Ed Engl ; 62(47): e202312618, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37795547

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene-linked dibenzyl-cyclooctyne undergoes strain-promoted azide-alkyne cycloaddition with an azide-containing HPPD ligand. The activation-based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD-related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Azidas , Fluorescência , Produtos Agrícolas , Inibidores Enzimáticos
11.
J Agric Food Chem ; 71(39): 14221-14231, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729497

RESUMO

Protoporphyrinogen IX oxidase (PPO/Protox, E.C. 1.3.3.4) is recognized as one of the most important targets for herbicide discovery. In this study, we report our ongoing research efforts toward the discovery of novel PPO inhibitors. Specifically, we identified a highly potent new compound series containing a pyrimidinedione moiety and bearing a versatile building block-benzoxazinone scaffold. Systematic bioassays resulted in the discovery of compound 7af, ethyl 4-(7-fluoro-6-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-3-oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)butanoate, which exhibited broad-spectrum and excellent herbicidal activity at the dosage of 37.5 g a.i./ha through postemergence application. The inhibition constant (Ki) value of 7af to Nicotiana tabacum PPO (NtPPO) was 14 nM, while to human PPO (hPPO), it was 44.8 µM, indicating a selective factor of 3200, making it the most selective PPO inhibitor to date. Moreover, molecular simulations further demonstrated the selectivity and the binding mechanism of 7af to NtPPO and hPPO. This study not only identifies a candidate that showed excellent in vivo bioactivity and high safety toward humans but also provides a paradigm for discovering PPO inhibitors with improved performance through molecular simulation and structure-guided optimization.


Assuntos
Benzoxazinas , Herbicidas , Humanos , Benzoxazinas/farmacologia , Benzoxazinas/química , Protoporfirinogênio Oxidase , Inibidores Enzimáticos/química , Herbicidas/química , /metabolismo
12.
J Agric Food Chem ; 71(47): 18292-18300, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37738510

RESUMO

Scaffold hopping strategy has become one of the most successful methods in the process of molecular design. Seeking to develop novel succinate dehydrogenase inhibitors (SDHIs), we employed a scaffold hopping strategy to design compounds featuring geminate dichloralkenes (gem-dichloralkenes) fragment. After stepwise modifications, a series of N-cyclopropyl-dichloralkenes-pyrazole-carboxamide derivatives was synthesized. Among them, compounds G28 (IC50 = 26.00 nM) and G40 (IC50 = 27.00 nM) were identified as the best inhibitory activity against porcine SDH, with IC50 values reaching the nanomolar range, outperforming the lead compound pydiflumetofen. Additionally, the greenhouse assay indicated that compounds G37 (EC90 = 0.031 mg/L) and G34 (EC90 = 1.67 mg/L) displayed extremely high activities against wheat powdery mildew (WPM) and cucumber powdery mildew (CPM), respectively. Computational results further revealed that the gem-dichloralkene fragment and fluorine substituted pyrazole form an extra hydrophobic interaction and dipolar-dipolar interaction with SDH. In summary, our study provides a novel gem-dichloralkene scaffold with outstanding fungicidal properties, obtained through scaffold hopping, that holds great potential for future research on PM control.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Animais , Suínos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
13.
J Agric Food Chem ; 71(47): 18205-18211, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37421343

RESUMO

Pyridalyl, as a novel insecticide with an unknown mode of action, has shown excellent control efficacy against lepidopterous larvae and thrips. Previous modifications of this compound have mostly focused on the pyridine moiety, with limited information available about modifications to other parts of pyridalyl. In this paper, we report the synthesis and insecticidal activity of a series of azidopyridryl-containing dichlorolpropene ether derivatives, based on modifications to the middle alkyl chain of pyridalyl. Screening results for insecticidal activity indicate that our synthesized compounds show moderate to high activities at the tested concentrations against P. xylostella. Particularly, compound III-10 exhibits a LC50 value of 0.831 mg L-1, compared to the LC50 value of pyridalyl at 2.021 mg L-1. Furthermore, compound III-10 also displays a relatively broad insecticidal spectrum against Lepidoptera pests M. separata, C. suppressalis, O. nubilalis, and C. medinalis. Finally, in field trials, III-10 demonstrates better control efficiency against Chilo suppressalis compared to pyridalyl. Overall, our findings suggest that the modification of the middle alkyl chain of pyridalyl may be a promising approach for developing insecticides with improved efficacy.


Assuntos
Inseticidas , Mariposas , Animais , Relação Estrutura-Atividade , Inseticidas/farmacologia , Éter , Éteres/farmacologia , Larva , Estrutura Molecular
14.
J Agric Food Chem ; 71(24): 9519-9527, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37286337

RESUMO

Oomycetes, particularly those from the genus Phytophthora, are significant threats to global food security and natural ecosystems. Oxathiapiprolin (OXA) is an effective oomycete fungicide that targets an oxysterol binding protein (OSBP), while the binding mechanism of OXA is still unclear, which limits the pesticide design, induced by the low sequence identity of Phytophthora and template models. Herein, we generated the OSBP model of the well-reported Phytophthora capsici using AlphaFold 2 and studied the binding mechanism of OXA. Based on it, a series of OXA analogues were designed. Then, compound 2l, the most potent candidate, was successfully designed and synthesized, showing a control efficiency comparable to that of OXA. Moreover, field trial experiments showed that 2l exhibited nearly the same activity (72.4%) as OXA against cucumber downy mildew at 25 g/ha. The present work indicated that 2l could be used as a leading compound for the discovery of new OSBP fungicides.


Assuntos
Fungicidas Industriais , Phytophthora , Ecossistema , Doenças das Plantas , Fungicidas Industriais/farmacologia
15.
J Agric Food Chem ; 71(23): 8746-8756, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261811

RESUMO

Protoporphyrinogen IX oxidase (PPO, E.C. 1.3.3.4), a key functional enzyme existing in various organisms, is acknowledged to be one of the most important action targets in the development of herbicides due to its pivotal roles in chlorophyll and heme biosynthesis pathways. As our persistent research work on the discovery of novel PPO-inhibiting herbicides, a new compound methyl 2-((5-(3-chloro-4,5,6,7-tetrahydro-2H-indazol-2-yl)-6-fluorobenzo[d]thiazol-2-yl)thio)acetate (8aj, Ki = 16 nM) was screened out as a hit compound via a fragment-based virtual screening method performed in the Auto Core Fragment in silico Screening web server. Subsequently, through a fused process of "hit-to-lead" optimization guided by molecular simulation, a total of 30 3-chloro-4,5,6,7-tetrahydro-2H-indazol-benzo[d]thiazole derivatives were synthesized and characterized. The results of the enzymatic inhibition bioassay showed that more than half of the newly synthesized compounds displayed higher activity against Nicotiana tabacum PPO (NtPPO) than oxadiazon, a commercial PPO-inhibiting herbicide. In particular, compound 8ab, a subnanomolar inhibitor with a Ki value of 380 pM against NtPPO, was discovered, which showed to be 71-fold more active than the commercial control oxadiazon (Ki = 27 nM), and was proven to be the most potent PPO inhibitor so far. Furthermore, the greenhouse assay demonstrated that most of the synthetic compounds showed good herbicidal activity toward the tested weeds. Especially, compound 8ad (Ki = 670 pM) showed the most promising post-emergence herbicidal activity with a broad spectrum of weed control even at a concentration as low as 37.5 g a.i./ha and relatively safe to rice at a dosage of 150 g a.i./ha, indicating that 8ad has the greatest potential to be developed as a new herbicide for weed control in paddy fields. This work provides a paradigm for the rational design and discovery of a novel PPO-inhibiting herbicide guided by the fragment-based drug design.


Assuntos
Inibidores Enzimáticos , Herbicidas , Protoporfirinogênio Oxidase , Inibidores Enzimáticos/farmacologia , Controle de Plantas Daninhas , Herbicidas/farmacologia , Plantas Daninhas , /metabolismo
16.
ACS Sens ; 8(5): 2041-2049, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37146071

RESUMO

Small-molecule fluorogenic probes are indispensable tools for performing research in biomedical fields and chemical biology. Although numerous cleavable fluorogenic probes have been developed to investigate various bioanalytes, few of them meet the baseline requirements for in vivo biosensing for disease diagnosis due to their insufficient specificity resulted from the remarkable esterase interferences. To address this critical issue, we developed a general approach called fragment-based fluorogenic probe discovery (FBFPD) to design esterase-insensitive probes for in vitro and in vivo applications. With the designed esterase-insensitive fluorogenic probe, we successfully achieved light-up in vivo imaging and quantitative analysis of cysteine. This strategy was further extended to design highly specific fluorogenic probes for other representative targets, sulfites, and chymotrypsin. The present study expands the bioanalytical toolboxes available and offers a promising platform to develop esterase-insensitive cleavable fluorogenic probes for in vivo biosensing and bioimaging for the early diagnosis of diseases.


Assuntos
Diagnóstico por Imagem , Esterases
17.
Nucleic Acids Res ; 51(W1): W25-W32, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158247

RESUMO

Drug discovery, which plays a vital role in maintaining human health, is a persistent challenge. Fragment-based drug discovery (FBDD) is one of the strategies for the discovery of novel candidate compounds. Computational tools in FBDD could help to identify potential drug leads in a cost-efficient and time-saving manner. The Auto Core Fragment in silico Screening (ACFIS) server is a well-established and effective online tool for FBDD. However, the accurate prediction of protein-fragment binding mode and affinity is still a major challenge for FBDD due to weak binding affinity. Here, we present an updated version (ACFIS 2.0), that incorporates a dynamic fragment growing strategy to consider protein flexibility. The major improvements of ACFIS 2.0 include (i) increased accuracy of hit compound identification (from 75.4% to 88.5% using the same test set), (ii) improved rationality of the protein-fragment binding mode, (iii) increased structural diversity due to expanded fragment libraries and (iv) inclusion of more comprehensive functionality for predicting molecular properties. Three successful cases of drug lead discovery using ACFIS 2.0 are described, including drugs leads to treat Parkinson's disease, cancer, and major depressive disorder. These cases demonstrate the utility of this web-based server. ACFIS 2.0 is freely available at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS2/.


Assuntos
Simulação por Computador , Visualização de Dados , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Proteínas/química , Neoplasias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Internet , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos
18.
ChemMedChem ; 18(15): e202300204, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193853

RESUMO

Cyanines in the near-infrared region are a typical example of a classic fluorescent dye that has garnered significant attention and widespread use in the life sciences and biotechnology. Their character to form assemblies or aggregates has inspired the development of various functional cyanine dye aggregates in phototherapy. This article provides a brief summary of the strategies used to prepare these cyanine dye aggregates. The reports in this concept suggest that the self-assembly of cyanine dyes can enhance their photostability, opening up new possibilities for their application in phototherapy. This concept may encourage researchers to explore the development of functional fluorescent dye aggregates further.


Assuntos
Corantes Fluorescentes , Quinolinas , Carbocianinas , Fototerapia
19.
Biosens Bioelectron ; 231: 115289, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031507

RESUMO

Cell death resulting from ferroptosis is a consequence of the accumulation of lipid peroxides that are produced when lipids and reactive oxygen species (ROS) interact. This process is dependent on iron and alters the structure and polarity of lipid droplets (LDs). Unlike reactive fluorescent probes, environment-sensitive fluorescent probes can accurately monitor metabolic activities by sensing the intracellular environment of living organisms. To this end, we developed a polarity-sensitive fluorescent probe LIP-Ser that anchors to LDs and can be used to monitor changes in the polarity of LDs during ferroptosis by in situ imaging. LIP-Ser has a red-emitting (λem = 634 nm) and a large Stokes shift (Δλ = 161 nm in 1,4-dioxane), which avoids it from autofluorescence interference and crosstalk between excitation and emission spectra, thereby preventing low signal-to-noise ratio and severe fluorescence self-quenching during imaging. Additionally, LIP-Ser is used in this study to demonstrate that non-alcoholic fatty liver disease (NAFLD) promotes ferroptosis at the cellular and in vivo levels, and that inhibition of cellular ferroptosis effectively reduces the damage caused by NAFLD to cells and mouse liver tissue.


Assuntos
Técnicas Biossensoriais , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Corantes Fluorescentes/química
20.
Trends Biotechnol ; 41(8): 990-991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37045637

RESUMO

In response to Gromiha and Harini, we review the currently available thermodynamic databases for protein-nucleic acid interactions. These databases are designed for particular uses. We give general comments on them to facilitate browsing and exploration.


Assuntos
Ácidos Nucleicos , Proteínas , Bases de Dados de Ácidos Nucleicos , Termodinâmica , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...